Copied to
clipboard

G = C24.300C23order 128 = 27

140th non-split extension by C24 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.300C23, C23.387C24, C22.1882+ 1+4, (C2×D4).30Q8, C23.16(C2×Q8), (C22×C4).384D4, C23.614(C2×D4), C2.18(D43Q8), (C22×C4).71C23, C23.8Q863C2, C23.4Q814C2, C23.7Q855C2, C23.329(C4○D4), C22.84(C22×Q8), (C23×C4).373C22, (C2×C42).515C22, C22.267(C22×D4), C22.52(C22⋊Q8), C23.23D4.25C2, (C22×D4).525C22, C23.65C2369C2, C23.83C2317C2, C2.16(C22.29C24), C4.125(C22.D4), C2.C42.140C22, C2.31(C22.47C24), (C2×C4×D4).57C2, (C2×C4).37(C2×Q8), (C22×C4⋊C4)⋊24C2, C2.28(C2×C22⋊Q8), (C2×C4).1394(C2×D4), (C2×C4).810(C4○D4), (C2×C4⋊C4).257C22, C22.264(C2×C4○D4), C2.32(C2×C22.D4), (C2×C22⋊C4).153C22, SmallGroup(128,1219)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C24.300C23
C1C2C22C23C22×C4C23×C4C2×C4×D4 — C24.300C23
C1C23 — C24.300C23
C1C23 — C24.300C23
C1C23 — C24.300C23

Generators and relations for C24.300C23
 G = < a,b,c,d,e,f,g | a2=b2=c2=f2=1, d2=ca=ac, e2=g2=a, ab=ba, ede-1=gdg-1=ad=da, ae=ea, af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >

Subgroups: 548 in 292 conjugacy classes, 116 normal (26 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C2.C42, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C2×C4⋊C4, C4×D4, C23×C4, C23×C4, C22×D4, C23.7Q8, C23.7Q8, C23.8Q8, C23.23D4, C23.65C23, C23.4Q8, C23.83C23, C22×C4⋊C4, C2×C4×D4, C24.300C23
Quotients: C1, C2, C22, D4, Q8, C23, C2×D4, C2×Q8, C4○D4, C24, C22⋊Q8, C22.D4, C22×D4, C22×Q8, C2×C4○D4, 2+ 1+4, C2×C22⋊Q8, C2×C22.D4, C22.29C24, C22.47C24, D43Q8, C24.300C23

Smallest permutation representation of C24.300C23
On 64 points
Generators in S64
(1 45)(2 46)(3 47)(4 48)(5 63)(6 64)(7 61)(8 62)(9 23)(10 24)(11 21)(12 22)(13 20)(14 17)(15 18)(16 19)(25 30)(26 31)(27 32)(28 29)(33 38)(34 39)(35 40)(36 37)(41 49)(42 50)(43 51)(44 52)(53 60)(54 57)(55 58)(56 59)
(1 58)(2 59)(3 60)(4 57)(5 52)(6 49)(7 50)(8 51)(9 34)(10 35)(11 36)(12 33)(13 31)(14 32)(15 29)(16 30)(17 27)(18 28)(19 25)(20 26)(21 37)(22 38)(23 39)(24 40)(41 64)(42 61)(43 62)(44 63)(45 55)(46 56)(47 53)(48 54)
(1 47)(2 48)(3 45)(4 46)(5 61)(6 62)(7 63)(8 64)(9 21)(10 22)(11 23)(12 24)(13 18)(14 19)(15 20)(16 17)(25 32)(26 29)(27 30)(28 31)(33 40)(34 37)(35 38)(36 39)(41 51)(42 52)(43 49)(44 50)(53 58)(54 59)(55 60)(56 57)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 44 45 52)(2 49 46 41)(3 42 47 50)(4 51 48 43)(5 58 63 55)(6 56 64 59)(7 60 61 53)(8 54 62 57)(9 18 23 15)(10 16 24 19)(11 20 21 13)(12 14 22 17)(25 35 30 40)(26 37 31 36)(27 33 32 38)(28 39 29 34)
(2 59)(4 57)(5 61)(6 43)(7 63)(8 41)(9 21)(10 38)(11 23)(12 40)(14 32)(16 30)(17 27)(19 25)(22 35)(24 33)(34 37)(36 39)(42 52)(44 50)(46 56)(48 54)(49 62)(51 64)
(1 20 45 13)(2 14 46 17)(3 18 47 15)(4 16 48 19)(5 36 63 37)(6 38 64 33)(7 34 61 39)(8 40 62 35)(9 42 23 50)(10 51 24 43)(11 44 21 52)(12 49 22 41)(25 57 30 54)(26 55 31 58)(27 59 32 56)(28 53 29 60)

G:=sub<Sym(64)| (1,45)(2,46)(3,47)(4,48)(5,63)(6,64)(7,61)(8,62)(9,23)(10,24)(11,21)(12,22)(13,20)(14,17)(15,18)(16,19)(25,30)(26,31)(27,32)(28,29)(33,38)(34,39)(35,40)(36,37)(41,49)(42,50)(43,51)(44,52)(53,60)(54,57)(55,58)(56,59), (1,58)(2,59)(3,60)(4,57)(5,52)(6,49)(7,50)(8,51)(9,34)(10,35)(11,36)(12,33)(13,31)(14,32)(15,29)(16,30)(17,27)(18,28)(19,25)(20,26)(21,37)(22,38)(23,39)(24,40)(41,64)(42,61)(43,62)(44,63)(45,55)(46,56)(47,53)(48,54), (1,47)(2,48)(3,45)(4,46)(5,61)(6,62)(7,63)(8,64)(9,21)(10,22)(11,23)(12,24)(13,18)(14,19)(15,20)(16,17)(25,32)(26,29)(27,30)(28,31)(33,40)(34,37)(35,38)(36,39)(41,51)(42,52)(43,49)(44,50)(53,58)(54,59)(55,60)(56,57), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,44,45,52)(2,49,46,41)(3,42,47,50)(4,51,48,43)(5,58,63,55)(6,56,64,59)(7,60,61,53)(8,54,62,57)(9,18,23,15)(10,16,24,19)(11,20,21,13)(12,14,22,17)(25,35,30,40)(26,37,31,36)(27,33,32,38)(28,39,29,34), (2,59)(4,57)(5,61)(6,43)(7,63)(8,41)(9,21)(10,38)(11,23)(12,40)(14,32)(16,30)(17,27)(19,25)(22,35)(24,33)(34,37)(36,39)(42,52)(44,50)(46,56)(48,54)(49,62)(51,64), (1,20,45,13)(2,14,46,17)(3,18,47,15)(4,16,48,19)(5,36,63,37)(6,38,64,33)(7,34,61,39)(8,40,62,35)(9,42,23,50)(10,51,24,43)(11,44,21,52)(12,49,22,41)(25,57,30,54)(26,55,31,58)(27,59,32,56)(28,53,29,60)>;

G:=Group( (1,45)(2,46)(3,47)(4,48)(5,63)(6,64)(7,61)(8,62)(9,23)(10,24)(11,21)(12,22)(13,20)(14,17)(15,18)(16,19)(25,30)(26,31)(27,32)(28,29)(33,38)(34,39)(35,40)(36,37)(41,49)(42,50)(43,51)(44,52)(53,60)(54,57)(55,58)(56,59), (1,58)(2,59)(3,60)(4,57)(5,52)(6,49)(7,50)(8,51)(9,34)(10,35)(11,36)(12,33)(13,31)(14,32)(15,29)(16,30)(17,27)(18,28)(19,25)(20,26)(21,37)(22,38)(23,39)(24,40)(41,64)(42,61)(43,62)(44,63)(45,55)(46,56)(47,53)(48,54), (1,47)(2,48)(3,45)(4,46)(5,61)(6,62)(7,63)(8,64)(9,21)(10,22)(11,23)(12,24)(13,18)(14,19)(15,20)(16,17)(25,32)(26,29)(27,30)(28,31)(33,40)(34,37)(35,38)(36,39)(41,51)(42,52)(43,49)(44,50)(53,58)(54,59)(55,60)(56,57), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,44,45,52)(2,49,46,41)(3,42,47,50)(4,51,48,43)(5,58,63,55)(6,56,64,59)(7,60,61,53)(8,54,62,57)(9,18,23,15)(10,16,24,19)(11,20,21,13)(12,14,22,17)(25,35,30,40)(26,37,31,36)(27,33,32,38)(28,39,29,34), (2,59)(4,57)(5,61)(6,43)(7,63)(8,41)(9,21)(10,38)(11,23)(12,40)(14,32)(16,30)(17,27)(19,25)(22,35)(24,33)(34,37)(36,39)(42,52)(44,50)(46,56)(48,54)(49,62)(51,64), (1,20,45,13)(2,14,46,17)(3,18,47,15)(4,16,48,19)(5,36,63,37)(6,38,64,33)(7,34,61,39)(8,40,62,35)(9,42,23,50)(10,51,24,43)(11,44,21,52)(12,49,22,41)(25,57,30,54)(26,55,31,58)(27,59,32,56)(28,53,29,60) );

G=PermutationGroup([[(1,45),(2,46),(3,47),(4,48),(5,63),(6,64),(7,61),(8,62),(9,23),(10,24),(11,21),(12,22),(13,20),(14,17),(15,18),(16,19),(25,30),(26,31),(27,32),(28,29),(33,38),(34,39),(35,40),(36,37),(41,49),(42,50),(43,51),(44,52),(53,60),(54,57),(55,58),(56,59)], [(1,58),(2,59),(3,60),(4,57),(5,52),(6,49),(7,50),(8,51),(9,34),(10,35),(11,36),(12,33),(13,31),(14,32),(15,29),(16,30),(17,27),(18,28),(19,25),(20,26),(21,37),(22,38),(23,39),(24,40),(41,64),(42,61),(43,62),(44,63),(45,55),(46,56),(47,53),(48,54)], [(1,47),(2,48),(3,45),(4,46),(5,61),(6,62),(7,63),(8,64),(9,21),(10,22),(11,23),(12,24),(13,18),(14,19),(15,20),(16,17),(25,32),(26,29),(27,30),(28,31),(33,40),(34,37),(35,38),(36,39),(41,51),(42,52),(43,49),(44,50),(53,58),(54,59),(55,60),(56,57)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,44,45,52),(2,49,46,41),(3,42,47,50),(4,51,48,43),(5,58,63,55),(6,56,64,59),(7,60,61,53),(8,54,62,57),(9,18,23,15),(10,16,24,19),(11,20,21,13),(12,14,22,17),(25,35,30,40),(26,37,31,36),(27,33,32,38),(28,39,29,34)], [(2,59),(4,57),(5,61),(6,43),(7,63),(8,41),(9,21),(10,38),(11,23),(12,40),(14,32),(16,30),(17,27),(19,25),(22,35),(24,33),(34,37),(36,39),(42,52),(44,50),(46,56),(48,54),(49,62),(51,64)], [(1,20,45,13),(2,14,46,17),(3,18,47,15),(4,16,48,19),(5,36,63,37),(6,38,64,33),(7,34,61,39),(8,40,62,35),(9,42,23,50),(10,51,24,43),(11,44,21,52),(12,49,22,41),(25,57,30,54),(26,55,31,58),(27,59,32,56),(28,53,29,60)]])

38 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M4A4B4C4D4E···4T4U4V4W4X
order12···222222244444···44444
size11···122224422224···48888

38 irreducible representations

dim11111111122224
type++++++++++-+
imageC1C2C2C2C2C2C2C2C2D4Q8C4○D4C4○D42+ 1+4
kernelC24.300C23C23.7Q8C23.8Q8C23.23D4C23.65C23C23.4Q8C23.83C23C22×C4⋊C4C2×C4×D4C22×C4C2×D4C2×C4C23C22
# reps13222221144842

Matrix representation of C24.300C23 in GL6(𝔽5)

400000
040000
001000
000100
000010
000001
,
100000
010000
004000
000400
000010
000001
,
100000
010000
001000
000100
000040
000004
,
020000
200000
000100
001000
000030
000003
,
010000
400000
001000
000100
000001
000010
,
100000
010000
001000
000400
000010
000004
,
010000
400000
004000
000400
000010
000001

G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,2,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,3],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C24.300C23 in GAP, Magma, Sage, TeX

C_2^4._{300}C_2^3
% in TeX

G:=Group("C2^4.300C2^3");
// GroupNames label

G:=SmallGroup(128,1219);
// by ID

G=gap.SmallGroup(128,1219);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,560,253,120,758,723,675,80]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=f^2=1,d^2=c*a=a*c,e^2=g^2=a,a*b=b*a,e*d*e^-1=g*d*g^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽